Proinsulin stimulates growth of small intestinal crypt-like cells acting via specific receptors.
نویسندگان
چکیده
The mechanisms that regulate cell turnover in the intestinal epithelium are incompletely understood. Here we tested the hypothesis that proinsulin, present in serum and pancreatic juice in picomolar concentrations, stimulates growth of the rat small intestinal crypt-like cell line IEC-6 under serum-free conditions. Proinsulin binding was assessed by competitive ligand binding studies. Proinsulin and insulin-like growth factor I (IGF-I) stimulated cell proliferation up to threefold above controls, with half-maximal action already in the picomolar range and with additive effects. In early confluent cell monolayers, proinsulin bound with higher affinity (IC50 1.3 ± 0.05 nM) and capacity (87,200 ± 2,500 receptors/cell) than IGF-I (4.0 ± 0.6; 23,700 ± 2,200, P < 0.05). C-peptide competed with 10-fold lower affinity for binding of125I-proinsulin but not for125I-IGF-I or125I-insulin, suggesting a specific binding epitope of the proinsulin molecule within or close to the C-peptide region. In contrast, insulin showed ∼100-fold lower binding affinity and growth-promoting potency than proinsulin or IGF-I. We conclude that proinsulin stimulates growth of small intestinal crypt cells through specific binding and may play a physiological role in the regulation of intestinal epithelial cell proliferation.
منابع مشابه
Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2.
Glucagon-like peptide 2 (GLP-2) is a 33-aa proglucagon-derived peptide produced by intestinal enteroendocrine cells. GLP-2 stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. Moreover, GLP-2 prevents intestinal hypoplasia resulting from total parenteral nutrition. However, the...
متن کاملGLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis.
We wished to determine whether exogenous glucagon-like peptide (GLP)-2 infusion stimulates intestinal growth in parenterally fed immature pigs. Piglets (106-108 days gestation) were given parenteral nutrient infusion (TPN), TPN + human GLP-2 (25 nmol. kg(-1). day(-1)), or sow's milk enterally (ENT) for 6 days. Intestinal protein synthesis was then measured in vivo after a bolus dose of [1-(13)C...
متن کاملDual regulation of cell proliferation and survival via activation of glucagon-like peptide-2 receptor signaling.
Peptide hormones regulate cell viability and tissue integrity, directly or indirectly, through activation of G-protein-coupled receptors via diverse mechanisms including stimulation of cell proliferation and inhibition of cell death. Glucagon-like peptide-2 (GLP-2) is a 33 amino acid peptide hormone released from intestinal endocrine cells following nutrient ingestion. GLP-2 stimulates intestin...
متن کاملHeterogeneity of the Level of Activity of Lgr5+ Intestinal Stem Cells
Intestinal stem cells (ISCs) are a group of rare cells located in the intestinal crypts which are responsible for the maintenance of the intestinal homeostasis and intestinal regeneration following injury or inflammation. Lineage tracing experiments in mice have proven that ISCs can repopulate the entire intestinal crypt. It is noteworthy that in such experiments, only a subset of intestinal cr...
متن کاملRole of phosphatidylinositol-3 kinase-gamma in the actions of glucagon-like peptide-2 on the murine small intestine.
Glucagon-like peptide-2 (GLP-2) enhances intestinal growth and function through a cAMP-linked G protein-coupled receptor (GPCR) expressed in the mucosal layer and enteric nervous system. Because the type 1B gamma-isoform of phosphatidylinositol 3-kinase (PI3-K) is activated by GPCRs, we determined whether this enzyme plays a role in the intestinal actions of GLP-2 by using PI3-Kgamma knockout (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 276 2 شماره
صفحات -
تاریخ انتشار 1999